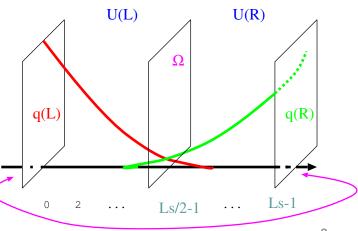
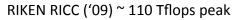
HEP Theory Lattice Activities & Plans

Taku Izubuchi


RIKEN BNL Research Center

Lattice Gauge theories


- True first-principles non-perturbative computations
- Indispensable bridge between experiment and theory, allowing new physics to be discovered. A part of precision frontier.
- Symmetries are key ingredients (gauge symmetry, chiral symmetry)
 - LGT and BNL
 - '79 Lattice Gauge simulation [M. Creutz]
 - '83- Electro Weak Matrix Element [Bernard & Soni,....]
 - '97- Domain-Wall Fermions (DWF)Nf=0 quenched [Blum & Soni]
 - '99- Riken-BNL-Columbia [RBC]
 - '02- DWF Nf=2 up, down quarks [RBC]
- '05- DWF Nf=2+1 up, down, strange quarks [RBC-UKQCD]
- '10 DWF Nf=2+1, continuum limit [RBC-UKQCD]

Domain-Wall quarks good chiral symmetry small unphysical mixings

- Small discretization error
- simple chiral extrapolations
- Unitary

mf

HEP Lattice at BNL

US Universities
Columbia
Connecticut

RIKEN-BNL Research Center

UKQCD
Univ. Edinburgh
Univ. Southampton

IBM

HEP Theory

FNAL/MILC

USQCD

QCDOC('05) ~ 10Tflops peak

NYCCS CCS/ITD

HotQCD

FNAL/Jlab ~ 160 Tflops peak

NYBlue('07)~ 130 Tflops peak

Intrepid ('08) ~560 Tflops peak

Organization

- RIKEN BNL Columbia (RBC) Collaboration (1998-)
 - RIKEN-BNL Research Center
 1.5 fellows, 2 PostDocs,
 3 long-term visiting scientists
 - Columbia University
 2 faculty, 2 PostDocs,
 8 Students
 - University of Connecticut 1 faculty, 2 PostDocs, 2 Students Harvard, Yale,
 Virginia (Google), Regensburg

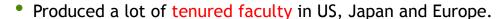
16 current students, ~20 PhD theses since 2005

- + UKQCD Collaboration (2005-)
 - Univ. of Edinburgh
 5 faculty, 1 fellows, 1 staff,
 2 PostDocs, 4 students
 - Univ. of Southampton 2 faculty, 1 Postdoc, 2 students
 CERN, Julich
- + JLQCD (planned since 2010)
 - KEK, Tsukuba & Osaka Univ

(# of personnel: accumulation of last 3 years)

Synergy with RIKEN BNL Research Center

RBRC
 T.D. Lee 1997-2002
 N.P. Samios 2003-



- Lattice
- Nuclear Theory
- Experiment
- Renewing MOU with BNL for JFY 2012-2017
- Synergy with HEP Theory group
 - Three generations of RBRC computers for Lattice

QCDOC, the prototype of IBM's Blue Gene series, was a seed for USQCD's LQCD

- Various PostDocs (in-house, RIKEN grants....)
- Junior Research Associate (Students)

Tenured faculty: 29 (theory) + 15 (exp) out of 24 (theory)+15 (exp) fellows and 30(theory)+19(exp) PostDocs.

Menu of Lattice Activities & Plans

- Formal study
- QCDCQ
- Ensemble Generation & Algorithm

ensemble is publically available for US & international community

- QCD+QED & g-2 LbL
- Proton Decay
- Electric Dipole Moment of Proton/Neutron
- η η ' Spectroscopy and their Mixing
- Strangeness Contents of Nucleons

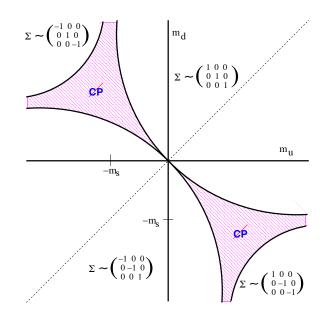
[Van de Water's talk]

- Pion Kaon Weak Matrix Elements B_K Im (A_2) and Re(A_2) Re(A_0) Im (A_0)
 - K_L - K_S mass difference and long distance contribution to ϵ_K

B- and D- meson Weak Matrix Elements

Static limit Quark

Relativistic Heavy Quark


Lattice world average

Theoretical Studies [M. Creutz]

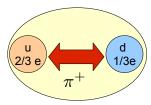
✓ Phase structure of QCD in (m_u, m_d) plane

[PRD83.016005, Annals. Phys. Phys. 326:911 (2011)]

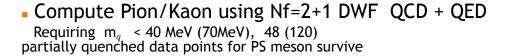
- Ising-like 2nd order at |mu+md| < |mu-md|</p>
- Phase transition occurs at nonvanishing mu and md
 - Long distance physics without small Dirac eigen values
- No transition at mu=0 when md is non-zero
 - No long distance physics despite small Dirac eigen values

✓ <u>Minimal Doubling Fermions</u>

[PRD83:094506 (2011), JHEP 1012:041, PRD82:074502, JHEP 1009:027 (2010)]

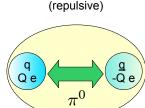

Works with Tatsuhiro Misumi & Taro Kimura also with Mainz group (Capitani, Wettig et. al.)

✓ Two reviews articles

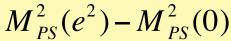

Annals Phys, 324:1573 (2009) Acta Physica Slovaca 61:1 (2011)

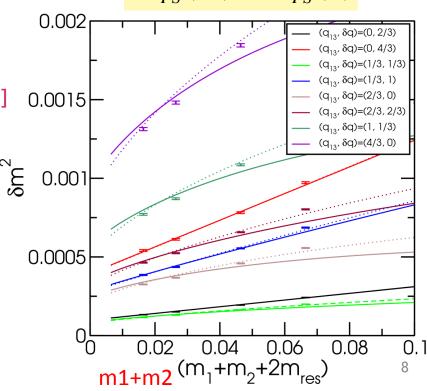
QCD+QED simulation

[PRD 82:094508 (2010), PoS KAON09:034]



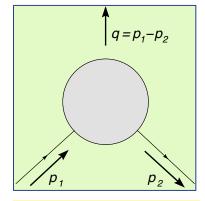
- Breakings of isospin symmetry
 - Electric charge $q_u = +2/3 e$, $q_d = -1/3 e$
 - quark masses $m_u \neq m_d$




• Fit to chiral perturbation theory with EM (SU(3)+EM or SU(2)+Kaon+EM) to extract guark masses.

- Chiral symmetry of DWF is used to define quark massless points.
- Input: experimental data M_pi, M_K(+), M_K(0)
- Output: quark masses m_u , m_d , m_s

(attractive)



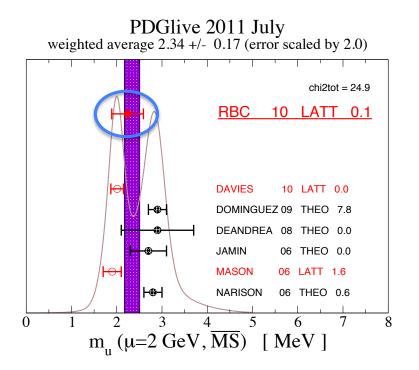
New Renormalization Schemes

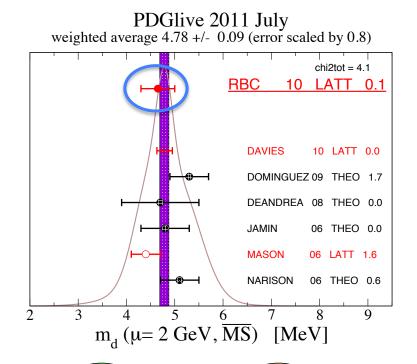
[09 C. Sturm, Y. Aoki, N. Christ, TI, C. Sachrajda, A. Soni PRD80:014501 (2009)]

 Match the normalization of operator on lattice and in continuum theory (MS) via RI/SMOM schemes

$$q^2 = p_1^2 = p_2^2$$

- •We find symmetric momentum (SMOM) configuration is useful to reduce one of the dominant systematic errors due to IR effects.
- Quark mass renormalization error


```
\sim 10\% (MOM) \rightarrow \sim 5\% (SMOM) \rightarrow \sim 2\% (SMOM 2-loop), [L. Almeida, C. Sturm, PRD82:054017 (2010)]
```


- Using different RI/SMOM schemes (using various spinor projections) to check the systematic errors
- 5 different schemes for the four quark operator for B_K to estimate the 2 loop effects.
- Now extended to Delta S = 1 operators (including Delta $I = \frac{1}{2}$)

```
[C. Lehner & C. Sturm, arXiv:1104.4948] and Step-scaling [R. Arthur & P. Boyle, PRD83 114511 (2011)]
```

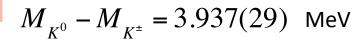
C. Sturm: an example of cross fields fertilization

The masses of up and down quarks determined are compiled in "Review of Particle Physics" 2011 5 LATTICE (2 DWF + EM and 3 staggered) and 4 THEORETICAL

Application of Results :

 Origins of isospin breakings in hadron masses

Theoretical Origins of


 K^{\pm}

S

Neutron / Proton mass difference

Breaking of Dashen's theorem

•Breaking in f_K / f_{π} , K_{l3} , and Delta $I = \frac{1}{2}$ rule, $\varepsilon' / \varepsilon$?

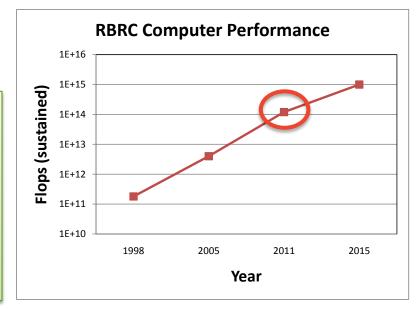
 K^0

5.23(14) MeV from (m_d-m_u) -1.327(37) MeV from QED¹⁰

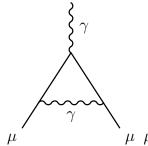
QCDCQ (QCD machine for Chiral Quarks)

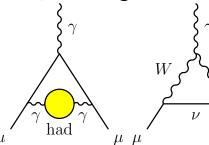
QCDCQ Computer

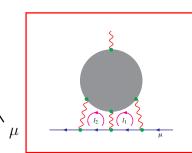
- Successor of QCDSP (99- 1Tflops), QCDOC (05- 10Tflops)
- Pre-commercial machine of IBM's Blue Gene Q, designed & developed by IBM, RIKEN-BNL, Columbia & University of Edinburgh.


[P. Boyle, N. Christ, C. Jung]

- 210 T flops peak / rack
- 2 racks for RIKEN-BNL (DD1) \$1M
 1 racks for BNL (DD2) in 2011 \$1.5M
 + 1 or 0.5 racks for USQCD?
- 4 racks at University of Edinburgh
- More accurate calculations $M\pi = 300 \text{ MeV} \rightarrow 180, 135 \text{ MeV}$
 - Improve tests of SM and beyond, CKM, radius of proton,
- New calculations will become possible
 - (g-2)_mu LbL, EDM, epsilon'/epsilon, strangeness in Nucleons,


muon's anomalous magnetic moment

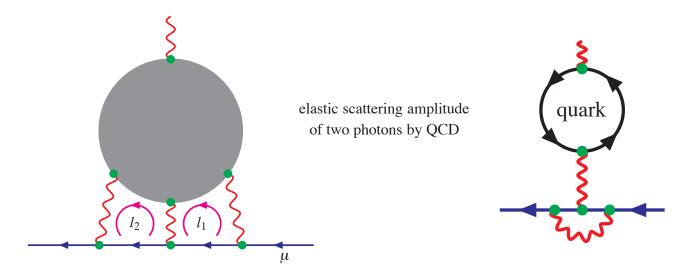

One of the most precisely determined numbers, starting from the construction of QED.



$$a_{\mu} = \frac{g-2}{2} = (116\ 592\ 089 \pm 54 \pm 33) \times 10^{-11}$$

BNL-E821

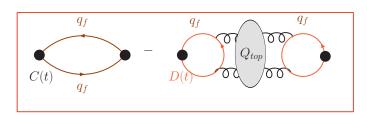
[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]


<u>- </u>	
Contribution	Result ($\times 10^{-11}$).
QED (leptons)	116 584 718.09 \pm 0.15
HVP (lo)	6 923. \pm 42
HVP (ho)	-97.9 \pm 0.9
HLBL	105.± 26
EW	154. \pm 2
Total SM	$116\ 591\ 802\ \pm\ 42_{HVP(lo)}\ \pm\ 26_{HIRI}\ \pm\ 02\ (49_{tot})$

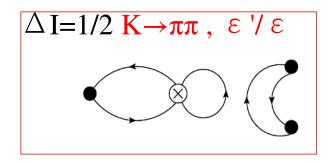
• 287 ± 80 or 3.6σ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by, at least, a factor of four over E821, or 0.14 ppm!

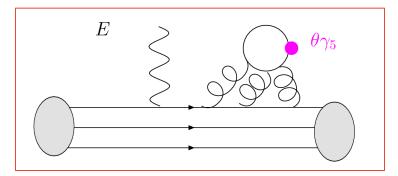
Hadronic Light-by-Light computation on lattice


- Goal : determine HLBL with \sim 10 % accuracy. [INT-11-47 Workshop on Hadronic Light-by-Light Contribution to $(g-2)_{\mu}$ (2011)]
- ullet Direct QCD+QED computation of $(g-2)_{\mu}$ Hadronic light-by-light diagram.

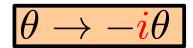
- $\mathcal{O}(e^6)$ two loop QED, l_1 l_2 , besides QCD, 8 dimension integral.
- Muon and Photon parts is fully known analytically.
- QCD+QED simulation has unwanted diagrams, which should be taken as parts of the photon's vacuum polarization and the vertex correction. $\mathcal{O}(e^4, e^6)$.


Tackling disconnected quark loops

•Brute force calculation Nf=2+1 $\eta - \eta'$ [PRL 100:241601(2010)]



Optimized (multi) hadron fields
 Direct computation of Re (A₀)


[arXiv:1106.2714 (2011)]

 New Idea Electric Dipole Moment (EDM) of Nucleons

vacuum angle θ is implemented on lattice with analytic continuation

 New algorithms to accelerate propagator computations [EigCG, MaDWF] (see B. Mawhinney& H. Yin @ LAT11)

14

 Improved statistcs by Low eigenmode averaging

Much improved Re(A_0) and 1st determination of Im(A_0) expected very soon (see Qi Liu's talk@LAT11)

Where are they now? Lattice

<u>Name</u>	When at BNL	Current Position
Sinya Aoki	1987-89	Faculty at University of Tsukuba
Andreas Gocksch	1988-93	Finance
Aida El-Khadra	1989-91	Faculty at University of Illinois
James Simone (gs; UCLA)	1989-91	Scientist at Fermilab Computer Division
Kenton Yee (gs; UCLA)	1989-92	Lawyer
Claudio Parrinello (gs; Univ. Pisa)	1992-94	Faculty at University of Liverpool
Ivan Horvath (gs; Rochester)	1992-95	Faculty at University of Kentucky
Wendy Schaffer	1993-96	Medicine/Sloane Kettering
Tom Blum	1995-04	Faculty at University of Connecticut
Matt Wingate	1997-00	Faculty at Cambridge University
Chris Dawson	1998-07	Faculty at University of Virginia, Google
Shoichi Sasaki	1998-00	Faculty at University of Tokyo
Tilo Wettig	2000-04	Faculty at Regensburg
Kostas Orginos	2000-03	Faculty at William & Mary
Yasumichi Aoki	2000-03, 2006-2010	Faculty at Nagoya University

gs = graduate student

CWS = Came with own fellowship support

LDRD = Laboratory Directed Research and Development

Where are they now? Lattice (contd.)

Name	When at BNL	Current Position
Sasa Prelovsek	2001-02	Faculty at Ljubljana
Jack Laiho (gs; Princeton)	2001-04	Faculty at University of Glasgow
Yukio Nemoto	2001-04	Post-doc at Nagoya University
Federico Berruto	2002-04	Finance
Jun-Ichi Noaki	2002-05	Five years fellow at KEK
Takanori Sugihara	2003-05	RIKEN Super computer R&D center
Norikzu Yamada	2003-06	Faculty at KEK
Takashi Kaneko (CWS)	2004-05	Faculty at KEK
Koichi Hashimoto (gs; Kanazawa Uni	v) 2004-06	HPC Computer Company
Takeshi Yamazaki	2004-07	Faculty at Nagoya University
Takumi Doi	2004-07	Post-doc at University of Tsukuba
Enno Scholz	2005-08	Faculty at Regensburg
Tomomi Ishikawa	2006-09	Post-doc at University of Connecticut
Adam Lichtl	2006-09	Finance

gs = graduate student

CWS = Came with own fellowship support

LDRD = Laboratory Directed Research and Development

Summary

- Lattice QCD is becoming a practical tool for non-perturbative calculation from first principles in particle physics. (bridge between experiment and theory)
- DWF, preserves chiral symmetry, is the simplest choice for (Weak) Matrix elements (\rightarrow R. Van de Water's talk), which are necessary ingredients for precise checks of the Standard Model of particle physics and beyond.
- DWF Nf=2+1 are being carried out thanks to many developments in theory, hardware, and algorithms.
- New hardware QCDCQ (BG/Q)
 - Improved and New Physics quantities :
 - Theoretical analysis
 - Isospin breaking effects from QCD+QED simulation
 - New renormalization schemes RI/SMOM
 - Weak Matrix Elements $B_{K'}$, ϵ'/ϵ , B & D Physics
 - disconnected diagrams η', g-2 LbL, Proton/Neutron EDM, strangeness in Nucleon ...

Appendix

QCDCQ target ensemble

Volume	1/a	L	m_{π}	Time units	m _{quark} a
002 × 04 4	1.40 GeV	4.5 fm	180 MeV	200	0.001+0.0018
32° X 04	32 ³ x 64 1.40 GeV		250 MeV	1000	0.0042+0.0018
043 × 04 1 70 04	1.70.001	2.7 fm	315 MeV	9000	0.005+0.0032
24° X 04	24 ³ x 64 1.73 GeV		402 MeV	9000	0.01+0.0032
	32 ³ x 64 2.32 GeV	2.7 fm	300 MeV	7000	0.004+0.0006
32 ³ x 64			350 MeV	8000	0.006+0.0006
			410 MeV	6000	0.008+0.0006

QCDCQ target ensemble (contd.)

Volume	1/a	L	m_{π}	Time units	m _{quark} a	QCDCQ Rack Yrs.
48 ³ x 64	1.40 GeV	6.7 fm	140 MeV	3000	0.0001+0.0018	0.5
48 ³ x 64	2.32 GeV	4.0 fm	180 MeV	6000	0.001+0.0006	0.25
64 ³ x 128	2.32 GeV	5.4 fm	140 MeV	6000	0.0004+0.0006	2.5
32 ³ x 8	1.40 GeV	4.5 fm	140 MeV	200,000	0.0001+0.0018	0.6
48 ³ x 8	1.40 GeV	6.7 fm	140 MeV	200,000	0.0001+0.0018	2.8
48 ³ x 12	1.73 GeV	5.4 fm	140 MeV	200,000	0.0005+0.001	2.0

- Coarse and Large lattice for Nucleon Physics and $K \to \pi\pi$ on physical quark mass
- Fine lattice scaling study on physical quark mass for accurate determination for basic quantities.
- Thermo dynamics studies using chiral lattice quark with physical mass.

QCD+QED Other Results

Breaking of Dashen's theorem (NLO, O(m e²), effects in ChPT)
[C. Aubin et al. (MILC) PRD70: 114501 (2004)]

$$\Delta E = \frac{M_K^2(m, 2/3, m_s, -1/3) - M_K^2(m, -1/3, m_s, -1/3)}{M^2(m, 2/3, m, -1/3) - M^2(m, -1/3, m, -1/3)} - 1,$$

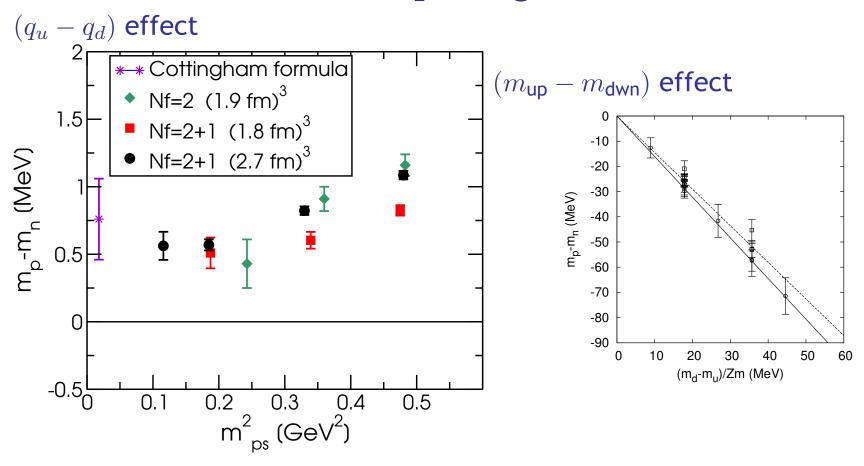
$$\Delta E = 0.628(59)$$

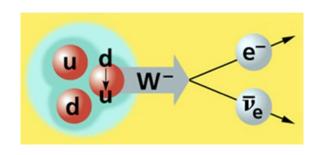
(statistical error ony)

"Iso symmetric QCD" values, e=0, at m_u=m_d=m_{ud}: $m_{\pi}^{(\text{QCD})} = 134.98(23) \text{ MeV},$ $m_{K}^{(\text{QCD})} = 494.521(58) \text{ MeV}.$

Gasser & Leutwyler's Kappa values:

$$\kappa_{\text{quark mass}} \equiv \frac{m_d - m_u}{m_s - m_{ud}} \frac{2m_{ud}}{m_s + m_{ud}},$$


$$\kappa_{\text{meson}} \equiv \frac{(M_{K^0}^2 - M_{K^{\pm}}^2)_{\text{QCD}}}{M_K^2 - M_{\pi}^2} \frac{M_{\pi}^2}{M_K^2}$$


$$\kappa_{\text{quark mass}} = 0.00176(4),$$

$$\kappa_{\text{meson}} = 0.00191(3),$$

$$\kappa(\eta \to \pi^0 \pi^+ \pi^-; p^6) = 0.0019(3)$$

Nucleon mass splitting in $N_F = 2, 2 + 1$

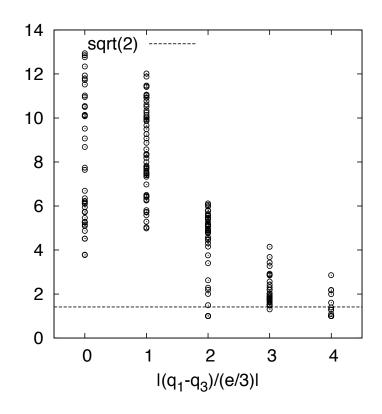
$$M_N - M_p|_{ extsf{QED}} = -0.383(68) \text{ MeV}$$
 $M_N - M_p|_{ extsf{quark mass}} = 2.24(12) \text{ MeV}$ $\implies M_N - M_p| = 1.86(14)(47)_{ extsf{FV,fit}} \text{ MeV}$ (experiment: 1.2933321(4)MeV)

 $(experiment: 1.2933321(4)MeV)_{22}$

$\mathcal{O}(e)$ error reduction

On the infinitely large statistical ensemble, term proportional to odd powers of
 e vanishes. But for finite statistics,

$$\langle O \rangle_e = \langle C_0 \rangle + \langle C_1 \rangle e + \langle C_2 \rangle e^2 + \cdots$$


 $\langle C_{2n-1} \rangle$ could be finite and source of large statistical error as e^{2n-1} vs e^{2n} .

• By averaging +e and -e measurements on the same set of QCD+QED configuration,

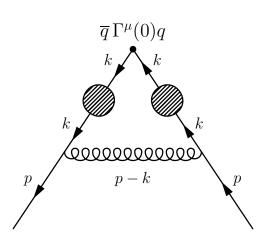
$$\frac{1}{2}[\langle O \rangle_e + \langle O \rangle_{-e}] = \langle C_0 \rangle + \langle C_2 \rangle e^2 + \cdots$$

 $\mathcal{O}(e)$ is exactly canceled.

• More than a factor of 10 error reduction, corresponding to $\times 100$ measurements by only twice computational cost (vs naive reduction factor $\sqrt{2}$).

Other recent works of isospin breaking on lattice

- [A.Portell, LAT10 (BMW)] EM correction to hadron masses
- [A. Torok, LAT10] [E. Freeland, LAT10]
 [MILC Collaboration (S. Basak et al.) PoS LAT2008 127]
 EM splitting using MILC ensembles. The breaking of Dashen's theorem

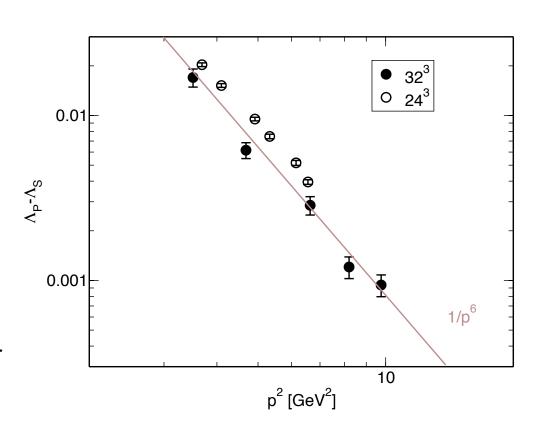

$$\Delta M_D^2 = (M_{K^\pm}^2 - M_{K^0}^2)_{\rm em} - (M_{\pi^\pm}^2 - M_{\pi^0}^2)_{\rm em}$$

- [A. Wallker-Loud, LAT10] Using anisotropic clover, m_u-m_d from $m_{\Xi^-}-m_{\Xi^0}$, derive $(m_p-m_n)_{m_d-m_u}$.
- [I.Baum, LAT10]
- [McNeile, Michael, Urbach (ETMC) PLB674(09) 286] $\rho \omega$ mass splitting using twisted Wilson fermion. Discussed $\rho \omega$ mixing from $m_u m_d$. Measure disconnected quark loop correlation.
- [JLQCD (E.Shintani et. al.)PRL 101(08) 242001, PRD79(09)] Calculate $\Pi_V \Pi_A$, derive the EM contribution to the pion's charge splittings in quark massless limit and the S-parameter using overlap fermion.
- [NPLQCD NPB 768 (07) 38] Calculate $(m_p m_n)_{m_d m_u}$. PQChPT for nucleon mass.

RI/SMOM scheme

- Renormalization scale of RI/MOM is set by the momentum of the fermion external lines' p²
- p² has to be large to avoid the unwanted infrared effects from the spontaneous chiral symmetry breaking, absent in the perturbation.
- Exceptional momentum (sum p =0) is easy for perturbation, but has the unwanted effects (Weinberg's theorem). It actually diverges in PS channel (pion pole) at the chiral limit.

RI/SMOM sets Non-exceptional symmetric momentum configuration, which reduce the unwanted IR divergence. Also perturbative convergence is better to 2 loop.

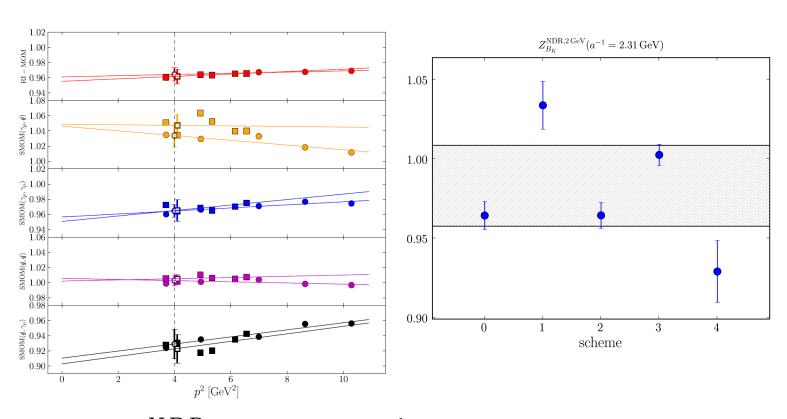

$$q^2 = p_1^2 = p_2^2$$

Results of RI/SMOM

Residual unwanted effects from chiral symmetry breaking

~ 1 % at
$$p = 2 \text{ GeV}$$

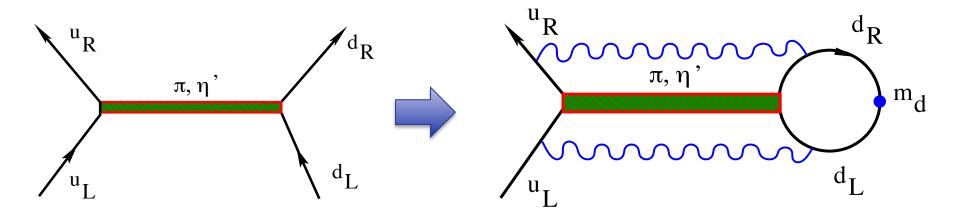
[Y. Aoki LAT09]


2-loop conversion factors.Truncation errors are smaller for SMOM

$$C_m^{\text{RI'/MOM}} = 1 - 0.133 - 0.0759 + \cdots$$

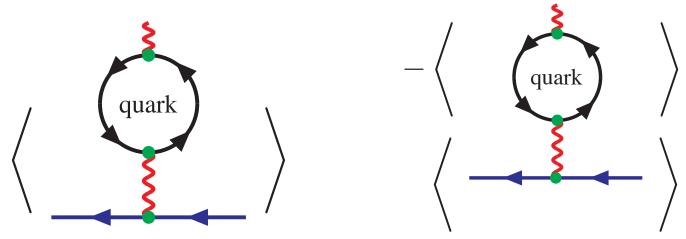
 $C_m^{\text{RI/MOM}_{\gamma}} = 1 - 0.133 - 0.0816 + \cdots$

$$C_m^{\text{RI/SMOM}} = 1 - 0.0161 - 0.00660 + \cdots$$
 $C_m^{\text{RI/SMOM}_{\gamma}} = 1 - 0.0495 - 0.0228 + \cdots$


Z(BK) systematic errors

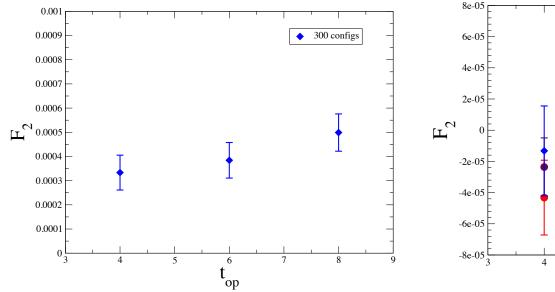
$$Z_{B_K}^{NDR}(\mu = 2\text{GeV}, a^{-1} = 2.31\text{GeV}) = 0.964(25)[2.6\%]$$

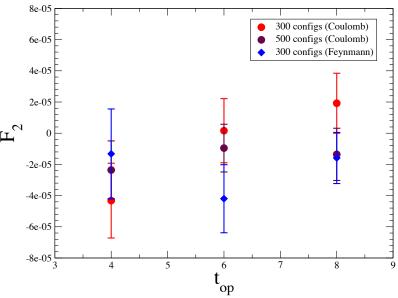
 $Z_{B_K}^{NDR}(\mu = 2\text{GeV}, a^{-1} = 1.73\text{GeV}) = 0.936(30)$


Question about quark masses [M. Creutz]

- =π,η' cause mixing among u_L , u_R , d_L , d_R effect of anomaly 't Hooft vertex
- This may cause an effective RG running for m_u/m_d , and thus scheme dependent.

HLBL subtraction [Lattice2005, hep-lat/050916]

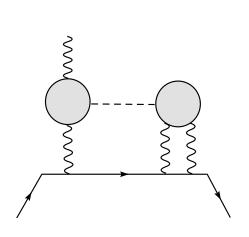

- Use one analytic photon propagator, which help to reduce statistical error from QED.
- Other two photons emerge stochastically (2 stochastic photon propagators).
- Use the parallel 4D FFT.
- In subtracting observables, the up stairs and down stairs are averaged separately, then
 multiplied together with the analytic photon.
- Correlations between the subtracted and the subtracting help to reduce the statistical error.

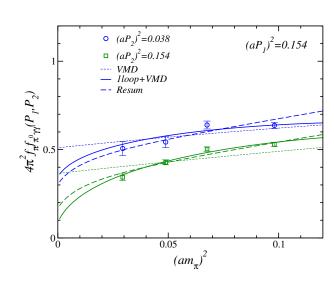


Preliminary Results for QED

[Saumitra Chowdhury Ph.D. thesis+Recent results]

- Only QED (e = 1).
- Extract $F_2(q^2)$ from the three point function on $16^3 \times 32$, $L_s = 8$
- $m_{\mu}=0.4$ (unphysically heavy), $m_l=0.01$
- $\mathcal{O}(100-1,000)$ QED configurations.


Non zero signal with a reasonable magnitude is obtained.


muon's anomalous magnetic moment computation on lattice

• $\pi^0 \to \gamma^{(*)} \gamma^{(*)}$ form factors or transition function [Eigo Shintani] : one of the significant part of HLBL

$$a_{\mu}^{LbyL} = -e^{6} \int \frac{dq_{1}^{4}dq_{2}^{4}}{(2\pi)^{8}} f(q_{1}, q_{2}, m_{\mu}^{2}) \times \left[\frac{f_{\pi^{0*} \to \gamma^{*} \gamma^{*}}(q_{1}^{2}, (q_{1} + q_{2})^{2}) f_{\pi^{0*} \to \gamma^{*} \gamma}(q_{2}^{2}, 0)}{q_{2}^{2} + m_{\pi}^{2}} \right] + \cdots$$

$$G_{\mu\nu}^{PVV}(P_2,Q) = \sum_{x,y} e^{-iQx - iP_2y} \left\langle 2m_q P^3(x) V_{\nu}^{EM}(y) V_{\mu}^{EM}(0) \right\rangle$$

$K \rightarrow \pi \pi Decays$

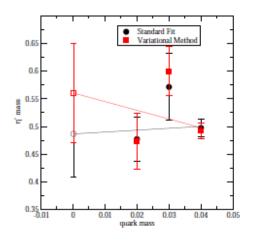
Miani-Testa theorem: Large times yield ππ at rest:

$$<\pi \pi(t) H_w(0) K(-t) > -> <\pi \pi(p=0) |H_w|K>.$$

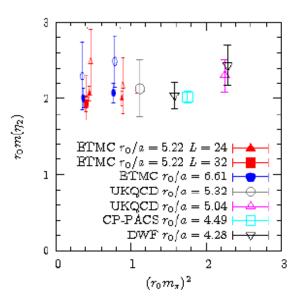
- Use finite box with anti-periodic boundary conditions to force $p_{\pi} \neq 0$.
- Give the K a finite momentum (Lab frame)
- Lellouch Luscher formula

Relation of on-shell decay amplitude in infinite volume |A|(CM) and on finite volume |M|(CM)

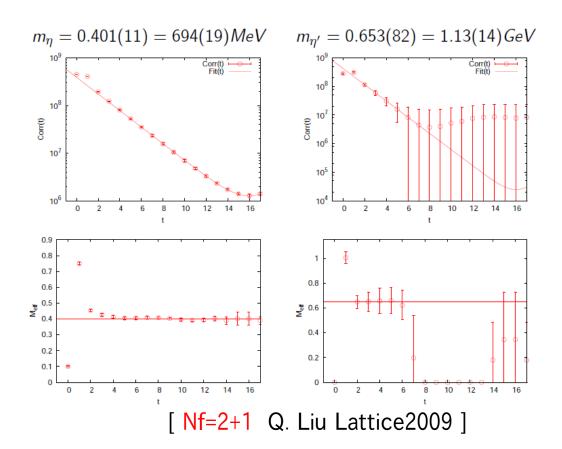
$$|A|^{2} = 8\pi \left(\frac{E_{\pi\pi}}{p}\right)^{3} \left\{ p \frac{\partial \delta(p)}{\partial p} + q \frac{\partial \phi(q)}{\partial q} \right\} |M|^{2}$$


where
$$E_{\pi\pi} = 2\sqrt{m_{\pi}^2 + p^2} = m_K$$

 δ : scattering phase shift


$$\tan \phi(q) = -\frac{q\pi^{3/2}}{Z_{00}(1;q^2)}, \quad Z_{00}(1;q^2) = \frac{1}{\sqrt{4\pi}} \sum_{n \in \mathbb{Z}^3} \frac{1}{n^2 - q^2}$$

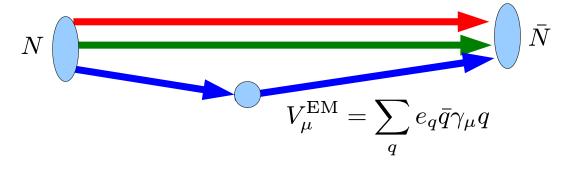
 $\delta(p)$ is obtained by $\delta(p) = n\pi - \phi(q), \ q = Lp/2\pi. \ l > 1$ is neglected.


Eta' results for Nf=2 & 2+1

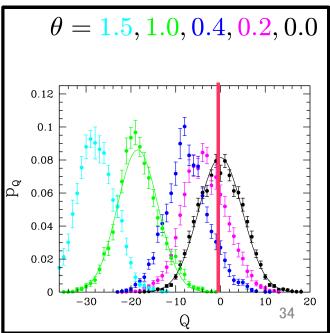
$m_{\eta'}$	$m_{\eta^\prime}^{ m phys}$ [MeV]	$m_{\eta'}r_0$	Fit and chiral extrapolation
0.480(78)	738(121)	2.05(33)	(Standard) AWTI
0.487(78)	748(120)	2.08(33)	(Standard) linear
0.532(82)	819(127)	2.28(35)	(Variational) AWTI
0.560(89)	862(130)	2.40(36)	(Variational) linear

[Nf=2 K. Hashimoto]

Proton/Neutron EDM on Lattice

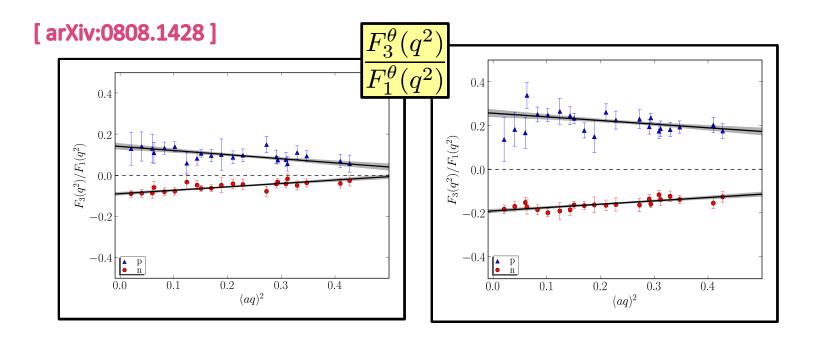

Permanent Electric Dipole Moment (EDM) is a signature of CP (or Time reversal) symmetry violation. $\vec{D} = D\vec{c}$

A source of CP violation:


Strong CP: vacuum angle θ , is implemented on lattice with analytically continued to pure imaginary (Monte Carlo simulation)

EDM is measured through the electric form factor $F_3(q^2)$

$$\left\langle N_s(\mathbf{p'})|V_{\mu}^{EM}(\mathbf{q})|\overline{N}_s(\mathbf{p})\right\rangle_{\theta} = F_1(q^2)\gamma_{\mu} + F_2(q^2)\frac{q_{\nu}\sigma_{\mu\nu}}{2m_N} + i\theta F_3(\mathbf{q}^2)\frac{q_{\nu}\sigma_{\mu\nu}\gamma_5}{2m_N} + \cdots, \qquad q = p' - p$$



$$D_n = \lim_{q^2 \to 0} \frac{e}{2m_N} F_3(q^2)$$

Preliminary Results of NEDM

- θ = 0.2 (left) and θ =0.4 (right)
- Dipole ansatz
- Has the systematical error from chiral breaking of clover fermion. [Aoki, Gocksch, Manohar, Sharpe PRL 65 1092 (1990)]
- DWF simulation is planned to remove the lattice artifact.

QCD* machines and Blue Gene

- QCDSP (48 GF/rack peak), TI DSP C31 (1993-1998)
 12 racks at RBRC, 600GF
- QCDOC (0.8 TF/rack) 180nm ASIC (2003-2005) 1 core, System on Chip, 12 racks at RBRC, 10TF, \$1/Mflops(sustained)
- BG/L (5.7TF/rack) 130nm ASIC (1999-2004) dual core system-on chip
- BG/P (13.9 TF/rack) 90nm ASIC (2004-2007) quad core, DMA
- QCDCQ (205 TF/rack) 45 nm (2007-2011)
 16 core, \$0.02/Mflops(sustained)
- Low power consumptions \longrightarrow large number of nodes (1,024) per rack
- High memory/interconnect Bandwidth
- Gives efficient performance for lattice QCD

Resources

```
QCDOC ( DOE + RBRC ) 2005-present 10 + 10 TFLOPS peak
USQCD + other resources (Teragrid, RIKEN/Japan)
2005-2007: 13 TFLOPS (peak) year 1 or 2 proposals to USQCD
         Nf=2, 2+1 QCD vacuum, WME, B K, EM, ....
2008: 80 TFLOPS (peak) year 2 proposals
         QCD vacuum + pi,K INCITE ALCF 180 M BG/P core hours (70 TFLOPS year)
 2009: 50 TFLOPS (peak) year 4 proposals
        QCD vacuum + pi, K INCITE ALCF 78 M BG/P core hours (30+3 TFLOPS year )
        Static-B, CPV 10 M QCD node hours (0.93 TFLOPS year)
        Relativistic-B 2.6 M 6n-node hours (5.9 TFLOPS year)
 2010: 97 TFLOPS (peak) year 7 proposals
         QCD vacuum + pi, K INCITE ALCF 75 M BG/P core hour (30+2 TFLOPS year)
         EM, Nucleon, Static-B
           RICC(RIKEN/Japan) 9.15 M RICC core hours (12 TFLOPS year)
         EM. Nucleon RICC 17.4 M RICC core hours (42 TFLOPS year)
     Relativistic-B 4 M Jpsi core hours (4 TFLOPS year)
     EM 7 M Jpsi core hours (7 TFLOPS year)
     Nucleon structures Teragrid (under review)
```

BG/Q Rack

Capacity for Four I/O Drawers

Service Card for Upper Midplane

Node Card

Service Card for Lower Midplane

Bulk Power Supply

Water Hoses

Another Bulk Power Supply (Not Shown)

